1359 independent reflections

 $R_{\rm int} = 0.024$

1237 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis(3-hydroxypyridinium) fumarate

Lan Shen,^a Jun-Hua Li,^b Jing-Jing Nie^b and Duan-Jun Xu^b*

^aDepartment of Obstetrics & Gynecology, Hangzhou Red Cross Hospital, Hangzhou 310003, People's Republic of China, and ^bDepartment of Chemistry, Zhejiang University, People's Republic of China Correspondence e-mail: xudj@mail.hz.zj.cn

Received 6 June 2009; accepted 21 June 2009

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.002 Å; R factor = 0.037; wR factor = 0.100; data-to-parameter ratio = 12.7.

The crystal structure of the title compound, $2C_5H_6NO_2^+$. C₄H₂O₄²⁻, consists of 3-hydroxypyridinium cations and fumarate dianions. The dianion is located on an inversion center and the cation is linked to it by $O-H\cdots O$ and N- $H \cdots O$ hydrogen bonds. The cation is twisted with respect to the anion by $24.83 (5)^{\circ}$.

Related literature

For general background, see: Thomas et al. (2007); Fidler et al. (2003); Zhang et al. (2004). For the ionization of hydropyridine in the solution, see: Lezina et al. (1981). For 3-hydropyridinium salts, see: Aakeroy & Nieuwenhuyzen (1994); Fukunaga et al. (2004). For co-crystals of neutral pyridine derivatives and neutral fumaric acid, see: Bowes et al. (2003); Aakeroy et al. (2002); Haynes et al. (2006); Bu et al. (2007); Xu et al. (2009). For C-O bond distances in the deprotonated carboxyl groups of fumarates, see: Liu et al. (2003); Liu & Xu (2004); Xu et al. (2009).

Experimental

Crystal data

 $2C_5H_6NO^+ \cdot C_4H_2O_4^{2-}$ $M_{r} = 306.27$ Monoclinic, $P2_1/n$ a = 3.8037 (5) Åb = 10.4798 (13) Å c = 17.423 (2) Å $\beta = 90.360 \ (5)^{\circ}$

 $V = 694.52 (15) \text{ Å}^3$ Z = 2Mo $K\alpha$ radiation $\mu = 0.12 \text{ mm}^{-1}$ T = 2.94 K $0.32\,\times\,0.28\,\times\,0.24$ mm Data collection

```
Rigaku R-AXIS RAPID IP
  diffractometer
Absorption correction: none
7561 measured reflections
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.037$	H atoms treated by a mixture of
$wR(F^2) = 0.100$	independent and constrained
S = 1.07	refinement
1359 reflections	$\Delta \rho_{\rm max} = 0.25 \ {\rm e} \ {\rm \AA}^{-3}$
107 parameters	$\Delta \rho_{\rm min} = -0.14 \text{ e } \text{\AA}^{-3}$
2 restraints	

Table 1

Hydrogen-bond geometry (Å, °).

			2 11 11
$\begin{array}{c} \overline{N1 - H1 \cdots O1} \\ O3 - H3 4 \cdots O2^{i} \\ O3 - H3 4 \cdots O2^{i} \\ \end{array}$	93 (12) 1.687 39 (14) 1.751	7 (12) 2.5774 (1 1 (15) 2.5831 (1	4) 175.2 (18) 5) 171.5 (16)

Symmetry code: (i) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{3}{2}$.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The work was supported by the ZIJIN Project of Zhejiang University, China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2594).

References

- Aakeroy, C. B., Beatty, A. M. & Helfrich, B. A. (2002). J. Am. Chem. Soc. 124, 14425-14432.
- Aakeroy, C. B. & Nieuwenhuyzen, M. (1994). J. Am. Chem. Soc. 116, 10983-10991.
- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
- Bowes, K. F., Ferguson, G., Lough, A. J. & Glidewell, C. (2003). Acta Cryst. B59, 100-117.
- Bu, T.-J., Li, B. & Wu, L.-X. (2007). Acta Cryst. E63, 03466.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Fidler, M. C., Davidsson, L., Zeder, C., Walczyk, T. & Hurrell, R. F. (2003). Br. J. Nutr. 90, 1081-1085.
- Fukunaga, T., Kashino, S. & Ishida, H. (2004). Acta Cryst. C60, o718-o722.
- Haynes, D. A., Jones, W. & Motherwell, W. D. S. (2006). CrystEngComm, 8, 830-840.
- Lezina, V. P., Shirokova, L. V., Borunov, M. M., Stepanyants, A. U. & Smirnov, L. D. (1981). Russ. Chem. Bull. 30, 540-544.
- Liu, Y. & Xu, D.-J. (2004). Acta Cryst. E60, m1002-m1004.
- Liu, Y., Xu, D.-J. & Hung, C.-H. (2003). Acta Cryst. E59, m297-m299.
- Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, TX, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Thomas, J. S., Muharrem, A. K. & Ulrich, M. (2007). Bioorg. Med. Chem. 15, 333-342
- Xu, K., Zhang, B.-Y., Nie, J.-J. & Xu, D.-J. (2009). Acta Cryst. E65, 01467.
- Zhang, X.-F., Gao, S., Huo, L.-H., Lu, Z.-Z. & Zhao, H. (2004). Acta Cryst. E60. m1367-m1369.

supplementary materials

Acta Cryst. (2009). E65, 01679 [doi:10.1107/S1600536809023800]

Bis(3-hydroxypyridinium) fumarate

L. Shen, J.-H. Li, J.-J. Nie and D.-J. Xu

Comment

The hydropyridine derivatives and the fumaric acid have been extensively applied in biological and medicine fields (Zhang *et al.*, 2004; Thomas *et al.*, 2007; Fidler *et al.*, 2003). Although the carboxyl group of the fumaric acid is usually deprotonated while the pyridine derivatives are protonated in the solution (Lezina *et al.*, 1981), some crystal structures showed that they also exist as co-crystal of neutral molecules (Bowes *et al.* 2003; Aakeroy *et al.*, 2002; Haynes *et al.* 2006; Xu *et al.* 2009). Herein we report the crystal structure of the title compound containing pyridine derivative and fumaric acid components.

The crystal structure of the title compond consists of fumarate anions and 3-hydroxypyridinium cations (Fig. 1). The planar fumarate anion is located in an inversion center. The C1—O1 bond distance of 1.2603 (15) Å is similar to C1—O2 bond distance of 1.2452 (15) Å, it agrees with those found in metal complexes of fumarate (Liu *et al.* 2003; Liu & Xu, 2004).

The 3-hydroxypyridine is protonated in the crystal structure, the geometry data is consistent with those in crystal structures of 3-hydroxypyridinium hydrogen *L*-malate (Aakeroy & Nieuwenhuyzen, 1994) and 3-hydroxypyridinium hydrogen tartronate (Fukunaga *et al.* 2004).

In the crystal structure the planar hydroxypyridinium cation is twisted respect to the planar fumarate with a dihedral angle of 24.83 (5)°, and links with the fumarate anions *via* N—H···O and O—H···O hydrogen bonding (Table 1 and Fig. 2).

Experimental

Reagents and solvent were used as purchased without further purification. 3-Hydroxypyridine (2 mmol) and fumaric acid (1 mmol) were dissolved in ethanol (5 ml) at room temperature. The single crystals were obtained from the solution after one week.

Refinement

H atoms bonded to N and O atoms were located in a difference Fourier map and were refined with distance restraints of O—H = 0.82 ± 0.01 and N—H = 0.86 ± 0.01 Å; $U_{iso}(H) = 1.5U_{eq}(N,O)$. Other H atoms were placed in calculated positions with C—H = 0.93 Å and refined in riding mode with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of the title compound with 40% probability displacement (arbitrary spheres for H atoms). Dashed lines indicate hydrogen bonding [symmetry code: (i) 1 - x, 1 - y, 1 - z].

Fig. 2. The unit cell packing diagram showing O—H···O and N—H···O hydrogen bonding (dashed lines) [symmetry code: (ii) -x + 1/2, y + 1/2, -z + 1/2].

Bis(3-hydroxypyridinium) fumarate

$2C_5H_6NO^+ \cdot C_4H_2O_4^{2-}$
$M_r = 306.27$
Monoclinic, $P2_1/n$
Hall symbol: -P 2yn
a = 3.8037 (5) Å
<i>b</i> = 10.4798 (13) Å
<i>c</i> = 17.423 (2) Å
$\beta = 90.360 \ (5)^{\circ}$
$V = 694.52 (15) \text{ Å}^3$
Z = 2

Data collection

Rigaku R-AXIS RAPID IP diffractometer	1237 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.024$
Monochromator: graphite	$\theta_{\text{max}} = 26.0^{\circ}$
T = 294 K	$\theta_{\min} = 2.3^{\circ}$
ω scans	$h = -4 \rightarrow 4$
Absorption correction: none	$k = -12 \rightarrow 12$
7561 measured reflections	$l = -20 \rightarrow 21$
1359 independent reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.037$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.100$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0527P)^{2} + 0.1474P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
<i>S</i> = 1.07	$(\Delta/\sigma)_{\rm max} = 0.001$
1359 reflections	$\Delta \rho_{max} = 0.25 \text{ e } \text{\AA}^{-3}$
107 parameters	$\Delta \rho_{\rm min} = -0.14 \ {\rm e} \ {\rm \AA}^{-3}$

 $D_x = 1.465 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2322 reflections $\theta = 2.4-24.6^{\circ}$ $\mu = 0.12 \text{ mm}^{-1}$ T = 294 KPrism, colorless $0.32 \times 0.28 \times 0.24 \text{ mm}$

 $F_{000} = 320$

2 restraints

Extinction correction: SHELXL97 (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$

Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.116 (10)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
N1	0.0136 (3)	0.56088 (11)	0.76518 (6)	0.0373 (3)
O1	0.2604 (3)	0.49000 (9)	0.63451 (5)	0.0489 (3)
02	0.4289 (3)	0.69067 (9)	0.62330 (5)	0.0568 (4)
03	-0.2084 (3)	0.39098 (10)	0.93748 (6)	0.0559 (3)
C1	0.3982 (3)	0.58033 (12)	0.59760 (7)	0.0368 (3)
C2	0.5267 (3)	0.55371 (13)	0.51822 (7)	0.0375 (3)
H2	0.6522	0.6174	0.4933	0.045*
C3	-0.0215 (3)	0.46506 (12)	0.81483 (7)	0.0357 (3)
Н3	0.0526	0.3836	0.8012	0.043*
C4	-0.1676 (3)	0.48541 (12)	0.88672 (7)	0.0366 (3)
C5	-0.2754 (3)	0.60885 (13)	0.90499 (7)	0.0410 (3)
Н5	-0.3763	0.6256	0.9524	0.049*
C6	-0.2323 (4)	0.70583 (13)	0.85271 (8)	0.0431 (3)
H6	-0.3019	0.7885	0.8647	0.052*
C7	-0.0849 (4)	0.67954 (13)	0.78221 (8)	0.0418 (3)
H7	-0.0543	0.7447	0.7466	0.050*
H1	0.103 (4)	0.5407 (17)	0.7195 (6)	0.063*
H3A	-0.127 (5)	0.3217 (12)	0.9213 (10)	0.063*
		2		
Atomic displac	ement parameters (Å	²)		

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0428 (6)	0.0421 (6)	0.0271 (5)	-0.0016 (5)	0.0072 (4)	0.0009 (4)
01	0.0743 (7)	0.0392 (6)	0.0333 (5)	-0.0081 (4)	0.0207 (5)	-0.0027 (4)
02	0.0928 (9)	0.0383 (6)	0.0397 (6)	-0.0108 (5)	0.0225 (5)	-0.0095 (4)
03	0.0852 (8)	0.0450 (6)	0.0378 (6)	0.0079 (5)	0.0253 (5)	0.0091 (4)
C1	0.0467 (7)	0.0355 (7)	0.0283 (6)	-0.0003 (5)	0.0071 (5)	-0.0027 (5)
C2	0.0468 (7)	0.0369 (7)	0.0290 (6)	-0.0030 (5)	0.0103 (5)	0.0003 (5)
C3	0.0420 (7)	0.0342 (6)	0.0310 (6)	0.0005 (5)	0.0076 (5)	-0.0018 (5)

supplementary materials

C4	0.0407 (7)	0.0406 (7)	0.0285 (6)	-0.0012 (5)	0.0072 (5)	0.0016 (5)
C5	0.0441 (7)	0.0472 (8)	0.0318 (6)	0.0042 (6)	0.0087 (5)	-0.0056 (6)
C6	0.0481 (7)	0.0363 (7)	0.0450 (7)	0.0055 (5)	0.0039 (6)	-0.0043 (5)
C7	0.0482 (8)	0.0386 (7)	0.0387 (7)	-0.0001 (5)	0.0044 (5)	0.0067 (5)
Geometric parar	neters (Å, °)					
N1—C7		1.3327 (17)	С2—Н2	2	(0.9300
N1—C3		1.3327 (16)	C3—C4	1		1.3898 (17)
N1—H1		0.893 (12)	С3—Н3		(0.9300
O1—C1		1.2603 (15)	C4—C5	5		1.3945 (18)
O2—C1		1.2452 (15)	C5—C6	5		1.3752 (19)
O3—C4		1.3369 (15)	С5—Н	5	(0.9300
O3—H3A		0.839 (14)	C6—C7	7		1.3813 (19)
C1—C2		1.4962 (16)	C6—He	6	0.9300	
C2—C2 ⁱ		1.308 (3)	С7—Н7	7	(0.9300
C7—N1—C3		121.94 (11)	O3—C4	4—C3		122.09 (12)
C7—N1—H1		121.9 (12)	O3—C4	4—C5		120.01 (11)
C3—N1—H1		116.2 (12)	C3—C4	4—C5		117.90 (11)
C4—O3—H3A		111.9 (13)	C6—C5	5—C4		119.86 (11)
O2-C1-O1		123.54 (11)	C6—C5	5—Н5		120.1
O2—C1—C2		118.36 (11)	C4—C5	5—Н5		120.1
O1—C1—C2		118.10 (11)	C5—C6	б—С7		119.49 (12)
C2 ⁱ —C2—C1		123.96 (15)	C5—C6	б—Н6		120.3
C2 ⁱ —C2—H2		118.0	С7—Се	б—Н6		120.3
C1—C2—H2		118.0	N1—C	7—С6		120.03 (12)
N1—C3—C4		120.77 (12)	N1—C	7—H7		120.0
N1—C3—H3		119.6	C6—C7	7—H7		120.0
С4—С3—Н3		119.6				
~ .						

Symmetry codes: (i) -x+1, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H1…O1	0.893 (12)	1.687 (12)	2.5774 (14)	175.2 (18)
O3—H3A···O2 ⁱⁱ	0.839 (14)	1.751 (15)	2.5831 (15)	171.5 (16)
Symmetry codes: (ii) $-x+1/2$, $y-1/2$, $-z+3/2$.				

Fig. 1

Fig. 2

